Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38493344

RESUMO

Venomous organisms have independently evolved the ability to produce toxins 101 times during their evolutionary history, resulting in over 200 000 venomous species. Collectively, these species produce millions of toxins, making them a valuable resource for bioprospecting and understanding the evolutionary mechanisms underlying genetic diversification. RNA-seq is the preferred method for characterizing toxin repertoires, but the analysis of the resulting data remains challenging. While early approaches relied on similarity-based mapping to known toxin databases, recent studies have highlighted the importance of structural features for toxin detection. The few existing pipelines lack an integration between these complementary approaches, and tend to be difficult to run for non-experienced users. To address these issues, we developed DeTox, a comprehensive and user-friendly tool for toxin research. It combines fast execution, parallelization and customization of parameters. DeTox was tested on published transcriptomes from gastropod mollusks, cnidarians and snakes, retrieving most putative toxins from the original articles and identifying additional peptides as potential toxins to be confirmed through manual annotation and eventually proteomic analysis. By integrating a structure-based search with similarity-based approaches, DeTox allows the comprehensive characterization of toxin repertoire in poorly-known taxa. The effect of the taxonomic bias in existing databases is minimized in DeTox, as mirrored in the detection of unique and divergent toxins that would have been overlooked by similarity-based methods. DeTox streamlines toxin annotation, providing a valuable tool for efficient identification of venom components that will enhance venom research in neglected taxa.


Assuntos
Toxinas Biológicas , Peçonhas , Animais , Peçonhas/genética , Peçonhas/química , Proteômica , Toxinas Biológicas/genética , Serpentes , Peptídeos , Transcriptoma
2.
Syst Biol ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456663

RESUMO

The molluscan order Neogastropoda encompasses over 15,000 almost exclusively marine species playing important roles in benthic communities and in the economies of coastal countries. Neogastropoda underwent intensive cladogenesis in early stages of diversification, generating a 'bush' at the base of their evolutionary tree, that has been hard to resolve even with high throughput molecular data. In the present study to resolve the bush, we use a variety of phylogenetic inference methods and a comprehensive exon capture dataset of 1,817 loci (79.6% data occupancy) comprising 112 taxa of 48 out of 60 Neogastropoda families. Our results show consistent topologies and high support in all analyses at (super)family level, supporting monophyly of Muricoidea, Mitroidea, Conoidea, and, with some reservations, Olivoidea and Buccinoidea. Volutoidea and Turbinelloidea as currently circumscribed are clearly paraphyletic. Despite our analyses consistently resolving most backbone nodes, three prove problematic: First, uncertain placement of Cancellariidae, as the sister group to either a Ficoidea-Tonnoidea clade, or to the rest of Neogastropoda, leaves monophyly of Neogastropoda unresolved. Second, relationships are contradictory at the base of the major 'core Neogastropoda' grouping. Third, coalescence-based analyses reject monophyly of the Buccinoidea in relation to Vasidae. We analysed phylogenetic signal of targeted loci in relation to potential biases, and we propose most probable resolutions in the latter two recalcitrant nodes. The uncertain placement of Cancellariidae may be explained by orthology violations due to differential paralog loss shortly after the whole genome duplication, which should be resolved with a curated set of longer loci.

3.
Mol Biol Evol ; 40(8)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37494290

RESUMO

The diversity of venomous organisms and the toxins they produce have been increasingly investigated, but taxonomic bias remains important. Neogastropods, a group of marine predators representing almost 22% of the known gastropod diversity, evolved a wide range of feeding strategies, including the production of toxins to subdue their preys. However, whether the diversity of these compounds is at the origin of the hyperdiversification of the group and how genome evolution may correlate with both the compounds and species diversities remain understudied. Among the available gastropods genomes, only eight, with uneven quality assemblies, belong to neogastropods. Here, we generated chromosome-level assemblies of two species belonging to the Tonnoidea and Muricoidea superfamilies (Monoplex corrugatus and Stramonita haemastoma). The two obtained high-quality genomes had 3 and 2.2 Gb, respectively, and 92-89% of the total assembly conformed 35 pseudochromosomes in each species. Through the analysis of syntenic blocks, Hox gene cluster duplication, and synonymous substitutions distribution pattern, we inferred the occurrence of a whole genome duplication event in both genomes. As these species are known to release venom, toxins were annotated in both genomes, but few of them were found in homologous chromosomes. A comparison of the expression of ohnolog genes (using transcriptomes from osphradium and salivary glands in S. haemastoma), where both copies were differentially expressed, showed that most of them had similar expression profiles. The high quality of these genomes makes them valuable reference in their respective taxa, facilitating the identification of genome-level processes at the origin of their evolutionary success.


Assuntos
Evolução Molecular , Gastrópodes , Duplicação Gênica , Genoma , Venenos de Moluscos , Gastrópodes/classificação , Gastrópodes/genética , Genoma/genética , Animais , Cromossomos/genética , Genes Homeobox , Sintenia/genética , Transcriptoma/genética , Venenos de Moluscos/genética
4.
Genome Biol Evol ; 14(11)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36256613

RESUMO

Pore-forming toxins are an important component of the venom of many animals. Actinoporins are potent cytolysins that were first detected in the venom of sea anemones; however, they are occasionally found in animals other than cnidarians and are expanded in a few predatory gastropods. Here, we report the presence of 27 unique actinoporin-like genes with monophyletic origin in Mytilus galloprovincialis, which we have termed mytiporins. These mytiporins exhibited a remarkable level of molecular diversity and gene presence-absence variation, which warranted further studies aimed at elucidating their functional role. We structurally and functionally characterized mytiporin-1 and found significant differences from the archetypal actinoporin fragaceatoxin C. Mytiporin-1 showed weaker permeabilization activity, no specificity towards sphingomyelin, and weak activity in model lipid systems with negatively charged lipids. In contrast to fragaceatoxin C, which forms octameric pores, functional mytiporin-1 pores on negatively charged lipid membranes were hexameric. Similar hexameric pores were observed for coluporin-26 from Cumia reticulata and a conoporin from Conus andremenezi. This indicates that also other molluscan actinoporin-like proteins differ from fragaceatoxin C. Although the functional role of mytiporins in the context of molluscan physiology remains to be elucidated, the lineage-specific gene family expansion event that characterizes mytiporins indicates that strong selective forces acted on their molecular diversification. Given the tissue distribution of mytiporins, this process may have broadened the taxonomic breadth of their biological targets, which would have important implications for digestive processes or mucosal immunity.


Assuntos
Venenos de Cnidários , Mytilus , Anêmonas-do-Mar , Animais , Mytilus/genética , Venenos de Cnidários/genética , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/metabolismo , Lipídeos
6.
Gigascience ; 10(3)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33764467

RESUMO

Venom research is a highly multidisciplinary field that involves multiple subfields of biology, informatics, pharmacology, medicine, and other areas. These different research facets are often technologically challenging and pursued by different teams lacking connection with each other. This lack of coordination hampers the full development of venom investigation and applications. The COST Action CA19144-European Venom Network was recently launched to promote synergistic interactions among different stakeholders and foster venom research at the European level.


Assuntos
Peçonhas
7.
Mol Phylogenet Evol ; 155: 107014, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33217577

RESUMO

A coiled shell is the most evident feature of the typical Bauplan of a gastropod mollusc. However, at least 54 families independently evolved an apparently simplified shell morphology: the limpet. Species with this largely uncoiled, depressed shell morphology occur in almost every aquatic habitat and are associated to a number of different lifestyles and diets. The marine gastropod family Capulidae includes 18 recognised genera, the large majority of which are coiled, but with a number of limpet-like species. Capulid shell plasticity is also associated to a broad range of feeding ecologies, from obligate suspension feeders to kleptoparasites. To investigate the evolution of the limpet-like shell in the family Capulidae we performed an ancestral state reconstruction analysis on a time-calibrated phylogenetic tree (COI, 16S, and ITS2) including 16 species representing a good deal of its morphological diversity. Our results identified at least three capulid lineages that independently evolved limpet-like shells, suggesting that a recurrent limpetization process characterizes this family. One of the limpet-like genera was undescribed and was here named Cryocapulus n. gen. We suggest that capulids evolved from a coiled suspension feeder lineage and that the shift to kleptoparasitism, which occurred in the family ancestor, may have represented a strategy to save energy through the exploitation of the water current produced by the host. Probably the major drivers of shell evolution in capulids are related to their ecology, most of them being kleptoparasites, include the shape and the kind of host substrate, and lead to the repeated acquisition of a limpet-like shape.


Assuntos
Gastrópodes/fisiologia , Interações Hospedeiro-Parasita , Parasitos/fisiologia , Exoesqueleto/anatomia & histologia , Animais , Calibragem , Filogenia , Processos Estocásticos , Fatores de Tempo
8.
Syst Biol ; 69(3): 413-430, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504987

RESUMO

How species diversification occurs remains an unanswered question in predatory marine invertebrates, such as sea snails of the family Terebridae. However, the anatomical disparity found throughput the Terebridae provides a unique perspective for investigating diversification patterns in venomous predators. In this study, a new dated molecular phylogeny of the Terebridae is used as a framework for investigating diversification of the family through time, and for testing the putative role of intrinsic and extrinsic traits, such as shell size, larval ecology, bathymetric distribution, and anatomical features of the venom apparatus, as drivers of terebrid species diversification. Macroevolutionary analysis revealed that when diversification rates do not vary across Terebridae clades, the whole family has been increasing its global diversification rate since 25 Ma. We recovered evidence for a concurrent increase in diversification of depth ranges, while shell size appeared to have undergone a fast divergence early in terebrid evolutionary history. Our data also confirm that planktotrophy is the ancestral larval ecology in terebrids, and evolutionary modeling highlighted that shell size is linked to larval ecology of the Terebridae, with species with long-living pelagic larvae tending to be larger and have a broader size range than lecithotrophic species. Although we recovered patterns of size and depth trait diversification through time and across clades, the presence or absence of a venom gland (VG) did not appear to have impacted Terebridae diversification. Terebrids have lost their venom apparatus several times and we confirm that the loss of a VG happened in phylogenetically clustered terminal taxa and that reversal is extremely unlikely. Our findings suggest that environmental factors, and not venom, have had more influence on terebrid evolution.


Assuntos
Organismos Aquáticos/classificação , Biodiversidade , Evolução Biológica , Meio Ambiente , Filogenia , Caramujos/classificação , Animais
9.
Toxins (Basel) ; 11(11)2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661832

RESUMO

Profundiconus is the most divergent cone snail genus and its unique phylogenetic position, sister to the rest of the family Conidae, makes it a key taxon for examining venom evolution and diversity. Venom gland and foot transcriptomes of Profundiconus cf. vaubani and Profundiconusneocaledonicus were de novo assembled, annotated, and analyzed for differential expression. One hundred and thirty-seven venom components were identified from P. cf. vaubani and 82 from P. neocaledonicus, with only four shared by both species. The majority of the transcript diversity was composed of putative peptides, including conotoxins, profunditoxins, turripeptides, insulin, and prohormone-4. However, there were also a significant percentage of other putative venom components such as chymotrypsin and L-rhamnose-binding lectin. The large majority of conotoxins appeared to be from new gene superfamilies, three of which are highly different from previously reported venom peptide toxins. Their low conotoxin diversity and the type of insulin found suggested that these species, for which no ecological information are available, have a worm or molluscan diet associated with a narrow dietary breadth. Our results indicate that Profundiconus venom is highly distinct from that of other cone snails, and therefore important for examining venom evolution in the Conidae family.


Assuntos
Evolução Biológica , Conotoxinas/genética , Conotoxinas/toxicidade , Caramujo Conus/química , Caramujo Conus/genética , Variação Genética , Animais
10.
Toxins (Basel) ; 11(2)2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759797

RESUMO

Proteins of the ShK superfamily are characterized by a small conserved domain (ShKT), first discovered in small venom peptides produced by sea anemones, and acting as specific inhibitors of voltage-dependent and calcium-activated K⁺ channels. The ShK superfamily includes both small toxic peptides and larger multifunctional proteins with various functions. ShK toxins are often important components of animal venoms, where they perform different biological functions including neurotoxic and immunosuppressive effects. Given their high specificity and effectiveness, they are currently regarded as promising pharmacological lead compounds for the treatment of autoimmune diseases. Here, we report on the molecular analysis of ShKT domain containing proteins produced by the Mediterranean vampire snail Cumia reticulata, an ectoparasitic gastropod that feeds on benthic fishes. The high specificity of expression of most ShK transcripts in salivary glands identifies them as relevant components of C. reticulata venom. These ShK proteins display various structural architectures, being produced either as single-domain secretory peptides, or as larger proteins combining the ShKT with M12 or CAP domains. Both ShKT-containing genes and their internal ShKT domains undergo frequent duplication events in C. reticulata, ensuring a high level of variability that is likely to play a role in increasing the range of their potential molecular targets.


Assuntos
Venenos de Cnidários/genética , Bloqueadores dos Canais de Potássio , Caramujos/genética , Animais , Venenos de Cnidários/química , Evolução Molecular , Filogenia , Domínios Proteicos , Transcriptoma
11.
Mol Phylogenet Evol ; 132: 1-13, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30502396

RESUMO

In most marine gastropods, the duration of the larval phase is a key feature, strongly influencing species distribution and persistence. Antarctic lineages, in agreement with Thorson's rule, generally show a short pelagic developmental phase (or lack it completely), with very few exceptions. Among them is the ascidian-feeding gastropod family Velutinidae, a quite understudied group. Based on a multilocus (COI, 16S, 28S and ITS2) dataset for 182 specimens collected in Antarctica and other regions worldwide, we investigated the actual Antarctic velutinid diversity, inferred their larval development, tested species genetic connectivity and produced a first phylogenetic framework of the family. We identified 15 Antarctic Molecular Operational Taxonomic Units (MOTUs), some of which represented undescribed species, which show two different types of larval shell, indicating different duration of the Pelagic Larval Phase (PLD). Antarctic velutinids stand as an independent lineage, sister to the rest of the family, with extensive hidden diversity likely produced by rapid radiation. Our phylogenetic framework indicates that this Antarctic flock underwent repeated events of pelagic phase shortening, in agreement with Thorson's rule, yielding species with restricted geographic ranges.


Assuntos
Biodiversidade , Moluscos/crescimento & desenvolvimento , Animais , Regiões Antárticas , Teorema de Bayes , Núcleo Celular/genética , Bases de Dados Genéticas , Complexo IV da Cadeia de Transporte de Elétrons/genética , Larva/crescimento & desenvolvimento , Moluscos/classificação , Moluscos/genética , Moluscos/ultraestrutura , Filogenia , Especificidade da Espécie , Urocordados
12.
Mol Biol Evol ; 35(11): 2654-2668, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30099551

RESUMO

Cytolytic pore-forming proteins are widespread in living organisms, being mostly involved in both sides of the host-pathogen interaction, either contributing to the innate defense or promoting infection. In venomous organisms, such as spiders, insects, scorpions, and sea anemones, pore-forming proteins are often secreted as key components of the venom. Coluporins are pore-forming proteins recently discovered in the Mediterranean hematophagous snail Cumia reticulata (Colubrariidae), highly expressed in the salivary glands that discharge their secretion at close contact with the host. To understand their putative functional role, we investigated coluporins' molecular diversity and evolutionary patterns. Coluporins is a well-diversified family including at least 30 proteins, with an overall low sequence similarity but sharing a remarkably conserved actinoporin-like predicted structure. Tracking the evolutionary history of the molluscan porin genes revealed a scattered distribution of this family, which is present in some other lineages of predatory gastropods, including venomous conoidean snails. Comparative transcriptomic analyses highlighted the expansion of porin genes as a lineage-specific feature of colubrariids. Coluporins seem to have evolved from a single ancestral porin gene present in the latest common ancestor of all Caenogastropoda, undergoing massive expansion and diversification in this colubrariid lineage through repeated gene duplication events paired with widespread episodic positive selection. As for other parasites, these findings are congruent with a "one-sided arms race," equipping the parasite with multiple variants in order to broaden its host spectrum. Overall, our results pinpoint a crucial adaptive role for coluporins in the evolution of the peculiar trophic ecology of vampire snails.


Assuntos
Adaptação Biológica , Evolução Molecular , Porinas/genética , Caramujos/genética , Animais , Estrutura Molecular , Família Multigênica , Filogenia , Porinas/química , Porinas/metabolismo , Seleção Genética , Caramujos/química , Caramujos/metabolismo
13.
Comput Biol Chem ; 75: 168-177, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29793090

RESUMO

Blood-feeding animals are known for their ability to produce bioactive compounds to impair haemostasis and suppress pain perception in the host. These compounds are extremely appealing for pharmacological development since they are generally very effective and specific for their molecular target. A preliminary RNA-Seq based characterization of the secretion from salivary and mid-oesophageal tissues of the vampire snail Cumia reticulata, revealed a complex mixture of feeding-related transcripts with potential anaesthetic and anticoagulant action. Based on the cloned full-length mRNAs, it was possible to verify the sequence of five genes encoding haematophagy-related products. The in silico modelled three-dimensional structure of each translational product was analysed to gain information on their potential biochemical activity. We have hereby validated and further investigated the assembled transcripts presumably involved in the antihaemostatic action, to improve our comprehensive understanding of this subset of the feeding secretion. The studied proteins included both inhibitors of primary haemostasis such as the vWFA domain-containing proteins, and compounds targeting different steps of the coagulation cascade, as e.g. the Turripeptide-like/protease inhibitor, the TFPI-like multiple Kunitz-type protease inhibitors, the Meprin-like metalloproteases and the Astacin/ShKT-like domain-containing proteins. All these molecules showed promising potential for pharmacological development.


Assuntos
Anticoagulantes/farmacologia , Clonagem Molecular , Hemostasia/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Algoritmos , Animais , Anticoagulantes/química , Modelos Moleculares , Inibidores de Proteases/química , Conformação Proteica , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/farmacologia , Caramujos
14.
Front Physiol ; 8: 580, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848453

RESUMO

Many marine mollusks attain or increase their predatory efficiency using complex chemical secretions, which are often produced and delivered through specialized anatomical structures of the foregut. The secretions produced in venom glands of Conus snails and allies have been extensively studied, revealing an amazing chemical diversity of small, highly constrained neuropeptides, whose characterization led to significant pharmacological developments. Conversely, salivary glands, the other main secretory structures of molluscan foregut, have been neglected despite their shared occurrence in the two lineages including predatory members: Gastropoda and Cephalopoda. Over the last few years, the interest for the chemistry of salivary mixtures increased based on their potential biomedical applications. Recent investigation with -omics technologies are complementing the classical biochemical descriptions, that date back to the 1950s, highlighting the high level of diversification of salivary secretions in predatory mollusks, and suggesting they can be regarded as a pharmaceutical cornucopia. As with other animal venoms, some of the salivary toxins are reported to target, for example, sodium and/or potassium ion channels or receptors and transporters for neurotransmitters such as, glutamate, serotonin, neurotensin, and noradrenaline, thus manipulating the neuromuscular system of the preys. Other bioactive components possess anticoagulant, anesthetic and hypotensive activities. Here, we overview available knowledge on the salivary glands of key predatory molluscan taxa, gastropods, and cephalopods, summarizing their anatomical, physiological and biochemical complexity in order to facilitate future comparative studies on main evolutionary trends and functional convergence in the acquisition of successful predatory strategies.

15.
Mar Environ Res ; 127: 92-101, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28413103

RESUMO

In marine environments, connectivity among populations of benthic invertebrates is provided primarily by dispersion of larvae, with the duration of pelagic larval phase (PLD) supposed to represent one of the major factor affecting connectivity. In marine gastropods, PLD is linked to specific larval development types, which may be entirely intracapsular (thus lacking a pelagic dispersal), or include a short pelagic lecithotrophic or a long planktotrophic phase. In the present study, we investigated two sibling species of the cosmopolitan neogastropod genus Columbella (commonly known as dove shells): Columbella adansoni Menke, 1853, from the Macaronesian Atlantic archipelagos, with planktotrophic development, and Columbella rustica Linnaeus, 1758, from the Mediterranean Sea, with intracapsular development. We expected to find differences between these two sister species, in terms of phylogeographic structure, levels of genetic diversification and spatial distribution of genetic diversity, if PLD was actually a relevant factor affecting connectivity. By analysing the sequence variation at the cytochrome c oxidase subunit I (COI) in 167 specimens of the two species, collected over a comparable geographic range, we found that Columbella adansoni, the species with planktotrophic development, and thus longer PLD, showed no phylogeographic structure, lower levels of genetic diversity, interpopulational variance lower than the intrapopulational one and no spatial structure in the distribution of the genetic diversity; Columbella rustica, the species with intracapsular development, thus with evidently lower dispersal abilities, showed a clear phylogeographic structure, higher levels of genetic diversity, high interpopulational and low intrapopulational variance, and a clear signature of global spatial structure in the distribution of the genetic diversity. Thus, in this study, two sibling species differing almost only in their larval ecology (and PLD), when compared for their genetic variation showed patterns supporting the hypothesis that PLD is a major factor affecting genetic connectivity. Therefore, it seems reasonable to expect that the ecological attributes of the marine communities - also in terms of the variation in larval ecology of the species involved - are taken into the due consideration in conservation actions, like the design of marine protected areas networks.


Assuntos
Organismos Aquáticos/fisiologia , Monitoramento Ambiental , Gastrópodes/fisiologia , Larva/fisiologia , Distribuição Animal , Animais , Ecossistema , Variação Genética , Genética Populacional , Larva/crescimento & desenvolvimento , Mar Mediterrâneo , Filogeografia
16.
BMC Genomics ; 16: 441, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26054852

RESUMO

BACKGROUND: Hematophagy arose independently multiple times during metazoan evolution, with several lineages of vampire animals particularly diversified in invertebrates. However, the biochemistry of hematophagy has been studied in a few species of direct medical interest and is still underdeveloped in most invertebrates, as in general is the study of venom toxins. In cone snails, leeches, arthropods and snakes, the strong target specificity of venom toxins uniquely aligns them to industrial and academic pursuits (pharmacological applications, pest control etc.) and provides a biochemical tool for studying biological activities including cell signalling and immunological response. Neogastropod snails (cones, oyster drills etc.) are carnivorous and include active predators, scavengers, grazers on sessile invertebrates and hematophagous parasites; most of them use venoms to efficiently feed. It has been hypothesized that trophic innovations were the main drivers of rapid radiation of Neogastropoda in the late Cretaceous. We present here the first molecular characterization of the alimentary secretion of a non-conoidean neogastropod, Colubraria reticulata. Colubrariids successfully feed on the blood of fishes, throughout the secretion into the host of a complex mixture of anaesthetics and anticoagulants. We used a NGS RNA-Seq approach, integrated with differential expression analyses and custom searches for putative secreted feeding-related proteins, to describe in detail the salivary and mid-oesophageal transcriptomes of this Mediterranean vampire snail, with functional and evolutionary insights on major families of bioactive molecules. RESULTS: A remarkably low level of overlap was observed between the gene expression in the two target tissues, which also contained a high percentage of putatively secreted proteins when compared to the whole body. At least 12 families of feeding-related proteins were identified, including: 1) anaesthetics, such as ShK Toxin-containing proteins and turripeptides (ion-channel blockers), Cysteine-rich secretory proteins (CRISPs), Adenosine Deaminase (ADA); 2) inhibitors of primary haemostasis, such as novel vWFA domain-containing proteins, the Ectonucleotide pyrophosphatase/phosphodiesterase family member 5 (ENPP5) and the wasp Antigen-5; 3) anticoagulants, such as TFPI-like multiple Kunitz-type protease inhibitors, Peptidases S1 (PS1), CAP/ShKT domain-containing proteins, Astacin metalloproteases and Astacin/ShKT domain-containing proteins; 4) additional proteins, such the Angiotensin-Converting Enzyme (ACE: vasopressive) and the cytolytic Porins. CONCLUSIONS: Colubraria feeding physiology seems to involve inhibitors of both primary and secondary haemostasis, anaesthetics, a vasoconstrictive enzyme to reduce feeding time and tissue-degrading proteins such as Porins and Astacins. The complexity of Colubraria venomous cocktail and the divergence from the arsenal of the few neogastropods studied to date (mostly conoideans) suggest that biochemical diversification of neogastropods might be largely underestimated and worth of extensive investigation.


Assuntos
Gastrópodes/química , Perfilação da Expressão Gênica/métodos , Venenos de Moluscos/genética , Análise de Sequência de RNA/métodos , Animais , Bases de Dados Genéticas , Esôfago/metabolismo , Gastrópodes/genética , Especificidade de Órgãos , Glândulas Salivares/metabolismo
17.
PLoS One ; 9(7): e102160, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25003611

RESUMO

Devising a reproducible approach for species delimitation of hyperdiverse groups is an ongoing challenge in evolutionary biology. Speciation processes combine modes of passive and adaptive trait divergence requiring an integrative taxonomy approach to accurately generate robust species hypotheses. However, in light of the rapid decline of diversity on Earth, complete integrative approaches may not be practical in certain species-rich environments. As an alternative, we applied a two-step strategy combining ABGD (Automated Barcode Gap Discovery) and Klee diagrams, to balance speed and accuracy in producing primary species hypotheses (PSHs). Specifically, an ABGD/Klee approach was used for species delimitation in the Terebridae, a neurotoxin-producing marine snail family included in the Conoidea. Delimitation of species boundaries is problematic in the Conoidea, as traditional taxonomic approaches are hampered by the high levels of variation, convergence and morphological plasticity of shell characters. We used ABGD to analyze gaps in the distribution of pairwise distances of 454 COI sequences attributed to 87 morphospecies and obtained 98 to 125 Primary Species Hypotheses (PSHs). The PSH partitions were subsequently visualized as a Klee diagram color map, allowing easy detection of the incongruences that were further evaluated individually with two other species delimitation models, General Mixed Yule Coalescent (GMYC) and Poisson Tree Processes (PTP). GMYC and PTP results confirmed the presence of 17 putative cryptic terebrid species in our dataset. The consensus of GMYC, PTP, and ABGD/Klee findings suggest the combination of ABGD and Klee diagrams is an effective approach for rapidly proposing primary species proxies in hyperdiverse groups and a reliable first step for macroscopic biodiversity assessment.


Assuntos
Biodiversidade , Caramujos/classificação , Animais , Código de Barras de DNA Taxonômico , Oceano Pacífico , Filogenia , Caramujos/genética
18.
J Comp Neurol ; 520(2): 364-83, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21800313

RESUMO

Nitric oxide synthase (NOS) has been characterized in several opistobranchs and pulmonates but it was much less investigated in prosobranchs, which include more than 20,000 species and account for most of the gastropod diversity. Therefore, new data from this large group are needed for a better knowledge of the molecular evolution of NOS enzymes in molluscs. This study focused on NOS expressed in the nervous system of the prosobranch neogastropod Stramonita haemastoma. In this study we report compelling evidence on the expression of a constitutive Ca(2+) /CaM-dependent neuronal NOS in the central and peripheral nervous system. The prevailing neuronal localization of NADPHd activity was demonstrated by NADPHd histochemistry in both central and peripheral nervous system structures. L-arginine/citrulline assays suggested that Stramonita NOS is a constitutive enzyme which is both cytosolic and membrane-bound. Molecular cloning of the full-length Stramonita NOS (Sh-NOS) by reverse-transcription polymerase chain reaction (RT-PCR) followed by 5' and 3' RACE showed that Sh-NOS is a protein of 1,517 amino acids, containing a PDZ domain at the N-terminus and sharing similar regulatory domains to the mammalian neuronal NOS (nNOS). Regional expression of the Sh-NOS gene was evaluated by RT-PCR. This analysis showed different expression levels in the nerve ring, the osphradium, the cephalic tentacles, the buccal tissues, and the foot, whereas NOS expression was not found in the salivary glands and the gland of Leiblein. The present data provide a solid background for further studies addressing the specific functions of NO in neogastropods.


Assuntos
Sistema Nervoso Central/anatomia & histologia , Sistema Nervoso Central/enzimologia , Gastrópodes/anatomia & histologia , Gastrópodes/enzimologia , Óxido Nítrico Sintase/metabolismo , Sequência de Aminoácidos , Animais , Inibidores Enzimáticos/metabolismo , Gânglios dos Invertebrados/anatomia & histologia , Humanos , Dados de Sequência Molecular , NADPH Desidrogenase/metabolismo , Neurônios/citologia , Neurônios/enzimologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/classificação , Óxido Nítrico Sintase/genética , Filogenia , Alinhamento de Sequência , Distribuição Tecidual
19.
Mol Phylogenet Evol ; 59(3): 685-97, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21440647

RESUMO

Cancellariidae, or nutmeg shells, is a family of marine gastropods that feed on the body fluids and the egg cases of marine animals. The 300 or so living species are distributed worldwide, mostly on soft bottoms, from intertidal to depths of about 1000 m. Although they are a key group for the understanding of neogastropod evolution, they are still poorly known in terms of anatomy, ecology and systematics. This paper reports the first mitochondrial multi-gene phylogenetic hypothesis for the group. Data were collected for 50 morphospecies, representative of 22 genera belonging to the three currently recognized subfamilies. Sequences from three genes (12S, 16S and COI) were analyzed with Maximum Likelihood analysis and Bayesian Inference, both as single gene datasets and in two partitioned concatenated alignment. Largely consistent topologies were obtained and discussed with respect to the traditional subfamilial arrangements. The obtained phylogenetic trees were also used to produce Robinson-Foulds supertrees. Our results confirmed the monophyly of the subfamily Plesiotritoninae, while Admetinae and Cancellariinae, as currently conceived, were retrieved as polyphyletic. Based on our findings we propose changes to the systematic arrangement of these subfamilies. At a lower taxonomic rank, our results highlighted the rampant homoplasy of many characters traditionally used to segregate genera, and thus the need of a critical re-evaluation of the contents of many genera (e.g. Nipponaphera, Merica, Sydaphera, Bivetia), the monophyly of which was not recovered.


Assuntos
Gastrópodes/genética , Filogenia , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Gastrópodes/classificação , Funções Verossimilhança
20.
PLoS One ; 4(11): e7667, 2009 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-19890382

RESUMO

Central to the discovery of neuroactive compounds produced by predatory marine snails of the superfamily Conoidea (cone snails, terebrids, and turrids) is identifying those species with a venom apparatus. Previous analyses of western Pacific terebrid specimens has shown that some Terebridae groups have secondarily lost their venom apparatus. In order to efficiently characterize terebrid toxins, it is essential to devise a key for identifying which species have a venom apparatus. The findings presented here integrate molecular phylogeny and the evolution of character traits to infer the presence or absence of the venom apparatus in the Terebridae. Using a combined dataset of 156 western and 33 eastern Pacific terebrid samples, a phylogenetic tree was constructed based on analyses of 16S, COI and 12S mitochondrial genes. The 33 eastern Pacific specimens analyzed represent four different species: Acus strigatus, Terebra argyosia, T. ornata, and T. cf. formosa. Anatomical analysis was congruent with molecular characters, confirming that species included in the clade Acus do not have a venom apparatus, while those in the clade Terebra do. Discovery of the association between terebrid molecular phylogeny and the occurrence of a venom apparatus provides a useful tool for effectively identifying the terebrid lineages that may be investigated for novel pharmacological active neurotoxins, enhancing conservation of this important resource, while providing supplementary information towards understanding terebrid evolutionary diversification.


Assuntos
Caramujos/classificação , Caramujos/genética , Peçonhas/genética , Animais , Biologia Computacional/métodos , DNA Mitocondrial/genética , Evolução Molecular , Variação Genética , Funções Verossimilhança , Filogenia , RNA Ribossômico/metabolismo , RNA Ribossômico 16S/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...